AMH CUT-OFF VALUES FOR PREDICTING OVARIAN RESPONSE IN IVF

Nguyễn Xuân Họi, MD, PhD Hoàng Văn Hùng MsC, MD

INTRODUCTION

- Ovarian stimulation is an important process in IVF treatment, aiming at obtain a number of quality oocytes.
- > To avoid OHSS and poor response.

- Reproductive endocrinologists check following biochemical tests to predict the efficiency of stimulation:
 - ➤ Woman's Age
 - ≻ FSH
 - ➢ E2 day 3
 - ≻ AFC

INTRODUCTION

Recently, AMH has been researched to evaluate the relationship between number of obtained oocytes and the rest of process.

However, studies have shown that value of AMH still varies for predicting ovarian response.

OBJECTIVES

1. To determine AMH cut-off values for predicting ovarian response in IVF

2. To compare AMH values with FSH, AFC and E2 for predicting ovarian response.

1. Ovarian stimulation in IVF treatment

- Definition: ovarian stimulation in IVF is a method of using hormones to stimulate number of follicles in order to obtain higher number of oocytes, getting higher pregnancy rate.
- Antagonist protocol: FSH used in the beginning of menstrual period. Then, Antagonist was used in day 6 or when diameter of follicles over 14 mm, to avoid peak of LH.

2. Ovarian responsiveness

> Normal responder: obtained oocytes ranged from 5-15.

High responder: Obtained more than 15 oocytes, no different in pregnancy rate, over 18 oocytes increase the risk of OHSS

Poor responder: obtained oocytes under 4, lower pregnancy rate, drop-out due to non-response, increase cost of treatment.

3. Ovarian reserve

Ovarian reserve is a term that is used to determine the capacity of the ovary to provide egg cells that are capable of fertilization resulting in a healthy and successful pregnancy.

reduce with female's age

Reduce ovarian reserve leads to poor response

4. Factors that determine ovarian reserve

- > Wife's age
- Level of FSH
- > AFC
- LEvel of E2
- Level of AMH

AGE

Age	PR (%)	Embryo implantation rates as a function of	
< 30 years	13.6	female age (42).	
30 – 34 years	13.5	Age	Implantation rate
35 – 39 years	12.6	25-29	18.2%
\geq 40 years	5.0	30–34 35–39	16.1% 15.3%
		40-44	6.1%
		Dominted with non	minning /Fastil Staril 1008-85-790

Reprinted with permission (Fertil Steril 1996;65:783– 790) (42).

- Age related significantly to low pregnancy rate
- (*P* < 0.05) in woman > 40 years old (*Wainer R et al, 2004*)
- PR 24.9% (66/265) (< 30 yrs) VS. 12.9% (11/85) (≥ 30 yrs) per cycle (Zadehmodarres S et al, 2009)
- Implantation rate decresed by age (ASRM Practice Committee. Aging and Infertility in women. Fertil Steril 2006)

2b Understanding Biomarkers FSH is not very accurate to assess ovarian response or pregnancy risk in ART

What is known?

• Cut-off point of 11.4 IU/L*:

- ► High specificity (83%-100%) to predict \leq 4 retrieved oocytes
- Low sensitivity (10%-30%) to predict DOR and failure to achieve pregnancy in ART

Cannot Identify High Responders

TS

*Standardized assays by WHO IRP 78/549 Esposito et al. *Hum Reprod* 2002;17:118; ASRM Practice Committee, *Fertil Steril* 2012;98:147.

Understanding Biomarkers

What is known?

Direct Biomarker of Functional Ovarian Reserve:

- Sum of antral follicles in both ovaries on TVUS at early follicular phase (D2-D4):
 - 2-10 mm (mean diameter)
 - Greatest 2D-plane
- Decrease in the number of detectable (TVUS) antral follicles with aging
- Reflect the number of antral follicles in the ovaries at a given time that can be stimulated by exogenous gonadotropins

AFC

Broekmans et al. Fertil Steril, 2010; 94(3):1044-51; Scheffer et al. Hum Reprod 2003;18:700

Anti-Müllerian Hormone

Understanding Biomarkers

What is known?

Direct Biomarker of Ovarian Reserve:

- Dimeric glycoprotein; ~140KDa
- ➢ Product of GCs of early follicles Pre-antral and small antral (≤ 4-8mm)
- Reflect both the number of small growing follicles and the primordial pool at gonadotropinindependent folliculogenesis

La Marca et, Hum Reprod 2009;24:2264; Fleming et al, Fertil Steril 2012;98:1097.

Understanding Biomarkers

Basic Concepts

AMH Serum Levels:

➢ Peak at age 25 and decrease with aging

Early marker of diminished ovarian reserve

Evidence Level

Understanding Biomarkers AMH is accurate to assess ovarian response

What is known?

AMH

- Cut-off point of 3.5 ng/mL* (Nardo et al, *Fertil Steril* 2009;92:1586)
 - High sensitivity (88%), specificity (70%) and accuracy (0.81) to predict excessive response¹
- Cut-off point of 1.4 ng/mL^* (Kwee et al, Fertil Steril 2008;90:737)
 - \succ High sensitivity (76%) and specificity (86%) to predict DOR²

Caution to apply AMH cut-off points! Make sure the assay you rely on is the same used in the reference population

*DSL assay; ¹>20 oocytes retrieved; ²≤5 oocytes retrieved; Conversion: ng/mL to pmol/L = value in ng/mL X7.14

5. Factors affect AMH

Race

Alcohol users, smoking users

Diabetes

PCOS

Using contraceptive methods

Administration of chemotherapy or radiation

Surgical removal of one or both ovaries

MATERIALS AND METHODOLOGY

1. Materials

- IVF Patients from October, 2014 to June, 2015 at National Center for ART.
- Study design
- Prospective study.
- Sample size

$$TP + FN = Z^{2} \frac{SN \times (1 - SN)}{W^{2}}$$
$$N = \frac{TP + FN}{P}$$

Sample size: 600 patients.

1. Personal characteristics

Ασρ

Age group	n	%
18-24	31	5,2
25-29	179	29,8
30-34	252	42,0
35-39	86	14,3
40-45	52	8,7
Mean (min – max)	31,7 \pm	5,2 (18 – 45)

Types of infertility

	n	Tỷ lệ %
Primary	328	54,7
Secondary	272	45,3
TOtal	600	100,0

Length of infertility

	n	%
< 5	313	52,2
5-10 years	254	42,3
> 10 years	33	5,5
Total	600	100,0
Mean	5,0 ± 3,2 (1,5 – 26,0)	

Cause of infertility

	n	%
Female	232	38,6
Male	59	9,8
Both	44	7,4
Unknown	265	44,2
Total	600	100,0

2. To determine AMH's predictive value for ovarian response

Mean of AMH

	n	%	Mean	Min – Max	р
Poor	28	4,7	1,04 ± 0,52	0,22 – 3,5	
Normal	374	62,3	3,52 ± 2,17	0,4 – 22,0	<0,001
High	198	33	7,02 ± 3,73	2,0 - 23,6	
Total	600	100%	4,57 ± 3,25	0,22– 23,6	

AMH's predictive value of ovarian response

	Predicted poor response (< 4 oocytes)			
	cutoff	Sen	Spec	
AMH ng/ml	1,13	88%	71%	
	1,25	85%	75%	
	1,36	84%	85%	
	1,47	81%	89%	
	1,52	80%	93%	
	1,58	79%	92%	
	1,63	73%	92%	
	1,69	74%	92%	

Vương Thị Ngọc Lan, cutoff: 1,25 ng/ml, Sen 87%; Spec 85% Ebner, Cutoff 1,66 ng/ml, Sen 69%; Spec 86%.

ROC for poor response

AUC of AMH: 91%, p < 0,01. Vương Thị Ngọc Lan, AUC: 92%, p < 0,01.

Relationship between level of AMH and number of oocytes

AMH's predictive value to high response

	Predicted high response (>15 oocytes)				
	Value	Sensitivity	Specificity		
AMH ng/ml	3,62	78%	54%		
	3,87	73%	58%		
	3,95	73%	59%		
	4,04	73%	61%		
	4,12	72%	61%		
	4,21	71%	61%		
	4,25	69%	62%		

Vương Thị Ngọc Lan, cutoff: 3,97 ng/ml, Sen 82%; Spec 81%. Ebner, Cutoff: 4,52 ng/ml, Sen 67%; Spec 78%.

ROC of AMH with high response

AUC of AMH in high response: 71%, p < 0,01.

Relationship between level of AMH and number of oocytes

	r	Equation	р
high response	0,338	number of oocyte = 0,382xAMH+17,336	<0,01

3. Comparision of predictive value of AMH to AFC,FSH, E2

Mean of AFC in groups of response

response	n	Mean	Min – Max	р
Poor	28	5,29 ± 3,92	3–7	
Normal	374	11,91 \pm 5,86	1 – 30	< 0,001
High	198	14,25 ± 5,65	1 – 30	
Total	600	12,71 ± 6,23	1 – 30	

AFC's predictive value to poor response

	Predictive value f	or poor respon	se (<4 oocytes)
	cutoff	Sen	Spec
	3,5	97%	35%
	4,5	94%	60%
	5,5	91%	78%
	6,5	87%	84%
AFC	7,5	81%	89%
	8,5	74%	89%
	9,5	68%	92%
	10,5	60%	92%
	11,5	54%	92%

Vương Thị Ngọc Lan, cutoff: 5 oocytes, Sen 78,7%, Spec 85,9%.

ROC of AFC to poor response

AUC of AFC in poor response: 88,5%, p < 0,01. Vương Thị Ngọc Lan, AUC: 88%, p <0,01.

Relationship between AFC and number of oocytes

	r	equation	р
Poor response	0,492	No of oocytes = 0,90xAFC+1,701	<0,05

Mean of FSH in response groups

Response	n	Mean	Min – Max	р
Poor	28	8,76 ± 3,39	3,00 – 15,00	
Normal	374	6,39 ± 1,96	0,30 – 15,00	<0,001
High	198	5,60 ± 1,66	0,09 – 14,55	
Total	600	6,21 ± 2,03	0,09 – 15,00	

FSH's predictive value to poor response

Predictive value to poor response (< 4 oocytes)						
	cutoff	Sen	Spec			
	6,79	67,8%	70,2%			
	6,80	67,8%	71,3%			
	6,81	67,8%	71,5%			
	6,82	67,8%	71,6%			
FSH (IU/L)	6,83	67,8%	71,9%			
	6,85	64,2%	72,0%			
	6,87	64,2%	72,2%			
	6,88	64,2%	72,5%			
	6,89	60,7%	72,5%			

Vương Thị Ngọc Lan, Cutoff: 8,94; Sen 57,5%, Spec 85,4%

ROC of FSH in poor response

AUC of FSH = 72,6%, p < 0,01. Vương Thị Ngọc Lan, AUC = 75%, p < 0,01.

Relationship between level of FSH and number of oocytes

	r	Equation	р
Poor response	-0,315	No. of oocyte = - 0,033xFSH+2,519	< 0,05

Mean of E2 in response groups

response	n	Mean	Min – Max	р
Poor	22	34,83 ± 12,35	19,28 – 69,00	
Normal	374	35,59 ± 18,72	4,10 – 174,00	P>0,05
High	198	37,57 ± 20,11	1,54 — 119,40	(0,464)
Total	594	36,22 ± 19,00	1,54 — 174,00	

Comparision of values of AMH, FSH, AFC to poor response

	Predict poor response (<4 oocytes)					
	Cutoff	Sen	Spec	AUC		
AMH(ng/mL)	1,52	80%	93%	91%		
AFC	6,5	87%	84%	88,5%		
FSH(IU/L)	6,83	67,8%	71,9%	72,6%		

***** Predictive value of AFC in high response

Predict high response (>15 oocytes)					
	Cutoff	Sen	Spec		
	7,5	88,3%	25%		
	8,5	85,3%	34,1%		
	9,5	82,8%	42,4%		
AEC	10,5	78,7%	52,0%		
AFC	11,5	70,7%	56,3%		
	12,5	61,6%	61,6%		
	13,5	50,0%	68,6%		
	14,5	44,4%	72,9%		

ROC of AFC in high response

AUC of AFC in high response = 65%, p < 0,01.

Relationship between AFC and number of oocytes in high response

	r	Equation	р
high response	0,167	No. of oocytes = 0,108xAFC+19,281	<0,05

Predictive value of FSH in high response

	High response (> 15 oocytes)					
	Cutoff	Sen	Spec			
	6,07	56,0%	69,1%			
	6,09	55,8%	69,2%			
	6,10	53,5%	72,2%			
	6,12	53,2%	72,2%			
F3H (IU/L)	6,14	53,2%	72,7%			
	6,15	53,0%	72,7%			
	6,17	52,7%	72,7%			
	6,18	52,0%	72,7%			

ROC of FSH in high response

AUC of FSH = 62,7%, p < 0,01.

Correlation of FSH and number of oocytes in high response

	r	equation	р
High response	-0,10	No. of oocyte = - 0,271xFSH+22,344	> 0,05

Comparision of values of AMH, FSH, AFC in high response

	high response (>15 oocytes)					
	Cutoff Sen Spec Al					
AMH (ng/mL)	4,04	73%	61%	71%		
AFC	10,5	78,7%	52,0%	65%		
FSH (IU/L)	6,145	53,2%	72,7%	62,7%		

Clinical Utility in Ovarian Stimulation

FSH AMH AFC

	Excessive	Avoid over-aggressive stimulation in 'true' high responders (↑Sensit.)	—	+++	+++
	Response	Avoid over-conservative stimulation in 'false' high responders (↑Specif.)	-	+++	+++
	Diminishe d Ovarian Reserve (DOR)	Avoid over-conservative stimulation in 'true' DOR (↑Sensit.)	+	+++	+++
		Avoid over-aggressive stimulation in 'false' DOR (↑Specif.)	+++	+++	+++

CONCLUSIONS

- 1. To determine AMH's predictive value to ovary's response in ovarian stimulation
- Cut-off of AMH in poor response:
 - 1,52 ng/ml; Sen 80%; Spec 93%.
 - ≤1,52 ng/ml: risk of poor response 7,4 times higher
- Cut-off of AMH in high response:
 - 4,04 ng/ml; Sen 73%; Spec 61%.
 - ≥ 4,04 ng/ml: risk of poor response 2,69 times higher

CONCLUSIONS

- 2. To compare AMH's predictive value to that of FSH, AFC and E2 in ovarian stimulation
- 2.1. In poor response:
- Predictive value: AMH (Sen: 80%, Spec: 93%) >> AFC (Sen: 87%, Spec: 84%) >> FSH (Sen: 67,8%, Spec: 71,9%).
- E2 day 3: no predictive value
- 2.2. In high response:
- Predictive value: AMH (Sen: 73%; Spec: 61%) >> AFC (Sen: 78,7%; Spec: 52,0%).
- FSH: no predictive value
- E2 day 3: no predictive value

Take home messages

1. AMH and AFC are currently the best biomarkers to predict ovarian response to COS.

2. Individualization of COS guided by such biomarkers is sound, and it is aimed to maximize the beneficial effects of treatment while minimizing complications and risks.

