Preventing & Treating Iron Deficiency Anaemia in Pregnant Women Are we doing our best ?

> Prof. Dr. med. Christian Breymann Zurich, Switzerland 15 May 2017

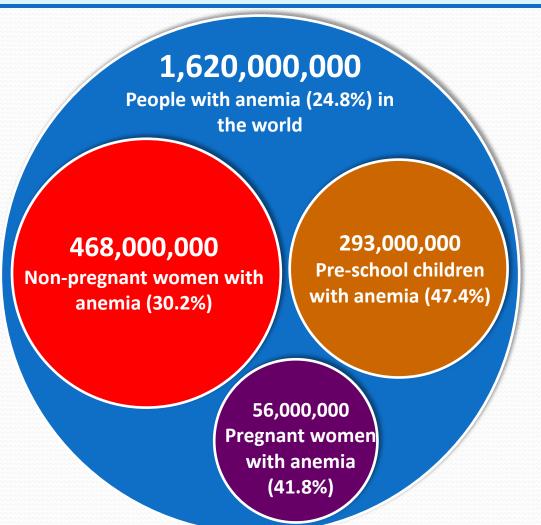
Global Burden of Diseases 2010 Study

- Anemia is a highly common and debilitating medical condition
- It is estimated that one third of the world's population suffers from anemia
- The most common cause of anemia is iron deficiency
- Lack of awareness about iron deficiency anemia leads to under-diagnosis and under-treatment

Kasselbaum NJ, et al. Blood 2014; 123:615-24

Children and women have the highest burden

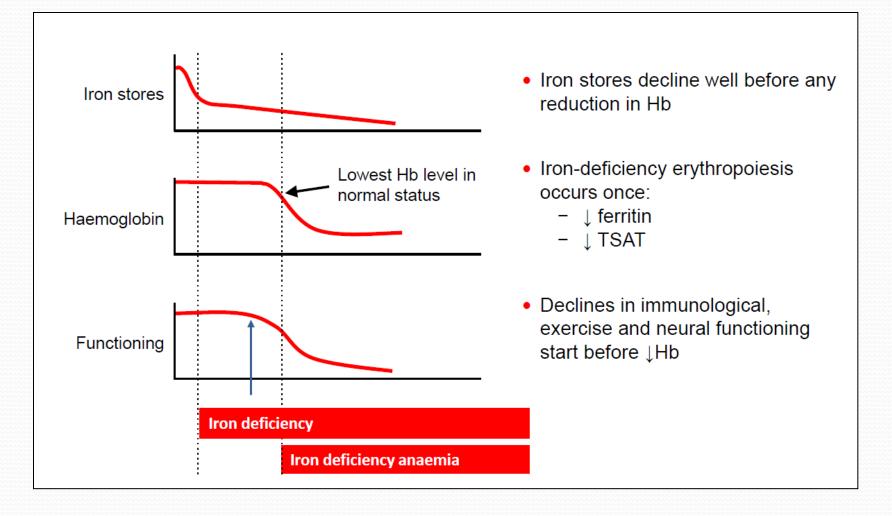
- The global burden of anemia is higher than other common disorders such as major depression or chronic respiratory diseases
- The most vulnerable age group is children under age 5 years.
 Kasselbaum NJ, et al. Blood 2014; 123:615-24



Worldwide prevalence of anemia WHO Vitamin and Mineral Nutrition Information System, 1993-2005

Iron deficiency is the most contributing factor for anaemia

World Health Organization and Centers for Disease Control and Prevention. 2008

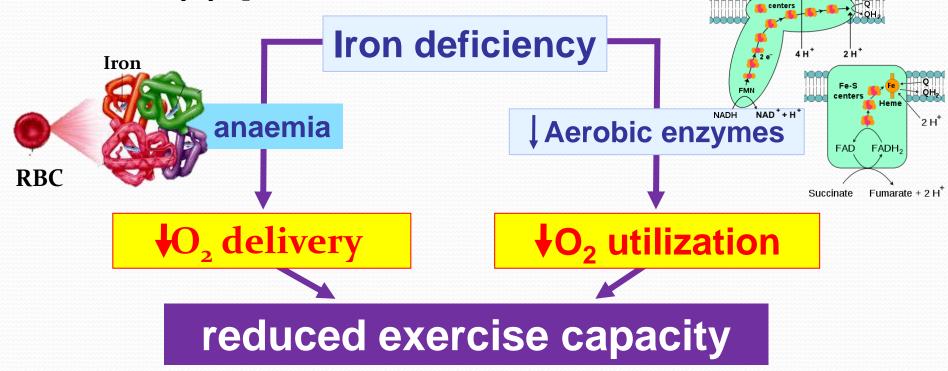

Iron Deficiency (ID) is underdiagnosed

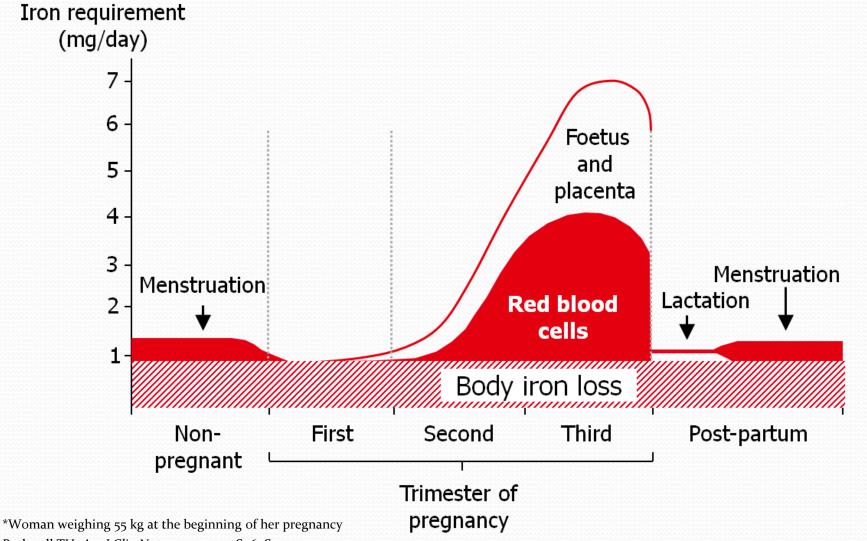
2 in 5

healthy women have **iron deficiency*** <u>1/3 with anaemia</u>**

> **Anaemia : Hb < 12g/dL ; *iron deficiency : ferritin <30ng/mL Interim result from the survey conducted by SATA CommHealth Singapore of 778 women

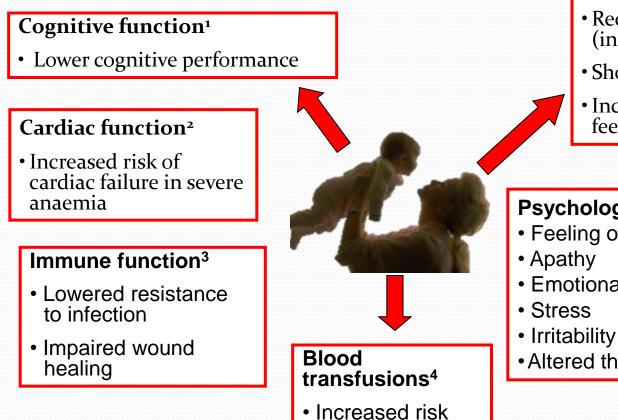
From Iron Deficiency to Iron Defiency Anaemia


Sign and symptoms of Iron deficiency


Iron works in cellular level

carrying oxygen (Hb) and utilizing oxygen (cell)

- Iron essential for respiratory chain processes
- Low iron levels, even without anaemia, increases fatigue and other iron deficiency symptoms



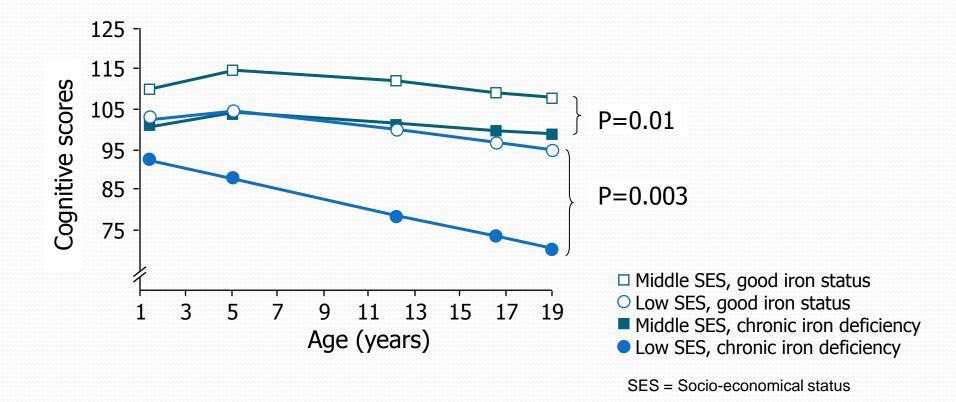
Iron deficiency may occur throughout women's health cycle

Bothwell TH. Am J Clin Nutr 2000;72:257S–64S

Consequences of IDA for pregnant mother

Milk production⁴

- Reduced milk production (insufficient milk syndrome)
- Shorter lactation periods
- Increased supplementary feeding


Psychological⁵

- Feeling of not enjoying motherhood
- Emotional instability
- Altered thyroid hormone metabolism

1. Beard JL et al. J Nutr 2005;135:267–272; 2. Reveiz L et al. Cochrane Database of Systematic Reviews 2007, Issue 2. Art No: CD003094. DOI: 10.1002/14651858.CD003094.pub2; 3. Harrison KA. Clin Obstet Gynaecol 1982;9:445–777; 4. Breymann C & Huch R. Anaemia in pregnancy and the puerperium. 2008 UNI-MED; 5. Corwin EJ et al. J Nutr 2003;133:4139-4142

Impact on Cognitive Performance

Cognitive scores to age 19 in 185 individuals with or without chronic iron deficiency in infancy

Lozoff B et al. Arch Pediatr Adolesc Med 2006;160:1108–1113

Diagnosis of iron deficiency

Iron Panel (serum):

- Ferritin
- Iron
- Total iron binding capacity (TIBC)
- Transferrin saturation (TSAT) or Iron saturation^{*}

*
$$TSAT = \frac{serum\,iron}{serum\,TIBC} \times 100\%$$

Parameter	Description ¹	ID	IDA
Haemoglobi n (Hb) (g/dL)	Marker of erythrocyte iron	-	(WHO) Female <12.0 g/dl Male <13 g/dl
Serum ferritin (SF) (ng/mL)	Marker of iron stores; highly sensitive	<30 ⁵ <100 (Inflammation)	
Transferrin saturation (TSAT) (%)	Measure of mobilised (functional) iron available for red cell production; highly specific		< 20 ²

1. Breymann C & Huch R. UNI-MED 2008:13-96;

2. Guyatt GH et al. Journal of General Internal Medicine 1992;7:145-153;

3. Skikne BS Am J Hematol 2002;76:213-218(Table I); 4. Bothwell TH. Am J Clin Nutr 2000;72:257S-264S;

5. Pavord et al. British Journal of Haematology, 2012, 156, 588-600

↑ above normal value ID= Iron deficiency IDA= Iron deficiency anaemia

WHO to supplement?

Population	Indication for supplementation	Dosage schedule	Duration
Pregnant women	All women	60 mg iron/day*	6 months in pregnancy
Postpartum women	Areas where anemia prevalence is ≥40%	60 mg iron/day	3 months postpartum
Children 6-24 months of age	All children	12.5 mg iron/day	6-12 months of age [#]
	Areas where anemia prevalence is ≥40%	12.5 mg iron/day	6-24 months of age [#]

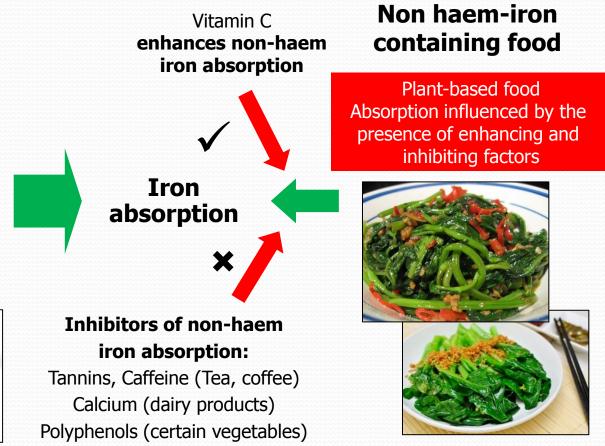
*) Daily oral iron + folic acid supplementation of 400 µg is recommended by the WHO to reduce the risk of low birth weight, maternal anaemia and ID

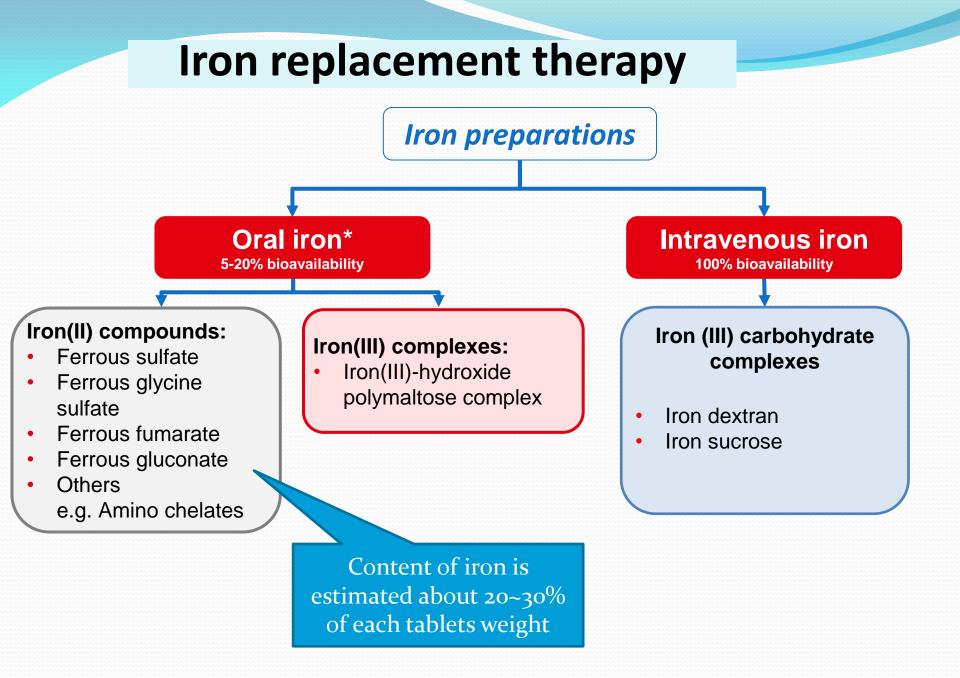
*) if 6 month duration cannot be achieved in pregnancy, continue to supplement during postpartum or increase the dose to 120mg in pregnanc

*) 2-24 months if low birth weight (<2500 g)

World Health Organization (2001). WHO Guidelines for the Use of Iron Supplements to Prevent and Treat Iron Deficiency Anemia WHO/NHD/01.3.

http://www.who.int/nutrition/publications/micronutrients/guidelines_for_Iron_supplementation.pdf


Dietary Advice for Iron-rich Food


Haem-iron containing food

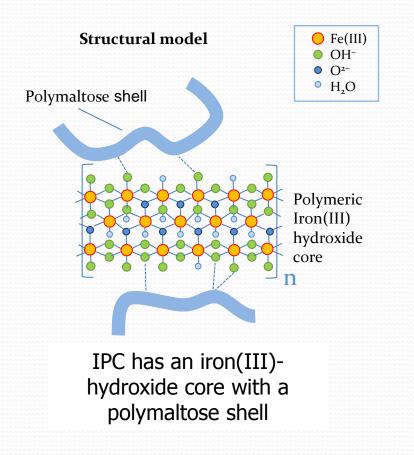
Iron from meat, poultry and fish ('heme iron') is **2-3 times more absorbable** than non-heme iron

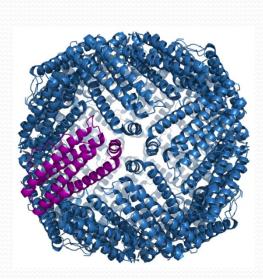
Fehr J et al. Praxis 2009;98:1445–1451; Gordeuk VR et al. Am J Clin Nutr 1987;46:1029–1034; Aapro M et al. Ann Oncol 2012;23:1954–1962

Oral Iron Therapy Options

Iron Product	Form	Content (mg)	Elemental Iron (mg)	Absorb (m	
Maltofer Fol (IPC)	Chewable Tablet	-	100		~12.5
Maltofer (IPC)	Syrup	10mg/ml	10mg/ml		~0.1
	Drops	50mg/ml	50mg/ml		~6.3
Ferrous fumarate (FF)	Tablet	200	~65	10-15%	~7.8
Iberet Folic (FS)	Tablet	525	~105	10-1570	~12.7
Sangobion (FG)	Tablet	250	~30		~7.3
Obimin (FF)	Tablet	90	~30		~3.6
Ferric Ammonium Citrate	Mixture	80mg/ml	~16mg/ml		~1.6

1. Alleyne et al. Am J Med. 2008 November ; 121(11): 943–948.

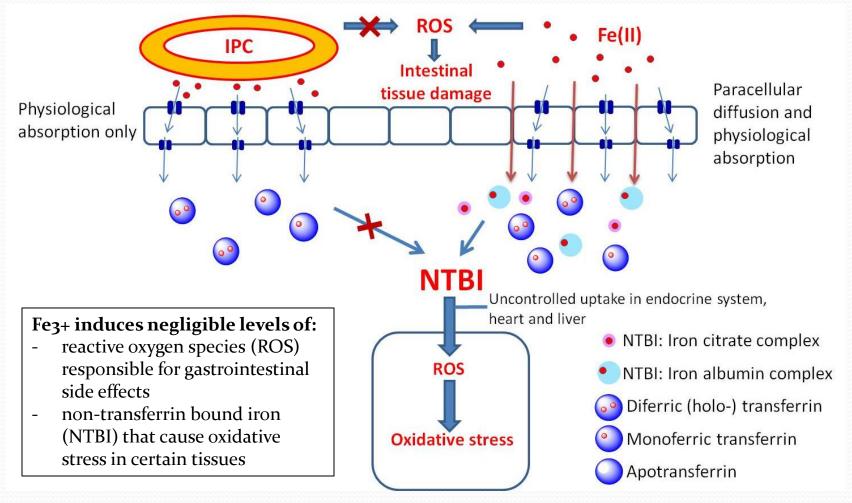

Beguin et al. Expert Opin. Pharmacother. (2014) 15(14):2087-2103
 MIMS Malaysia 2014


4. Ferrum Hausmann® Summary of Product Characteristic

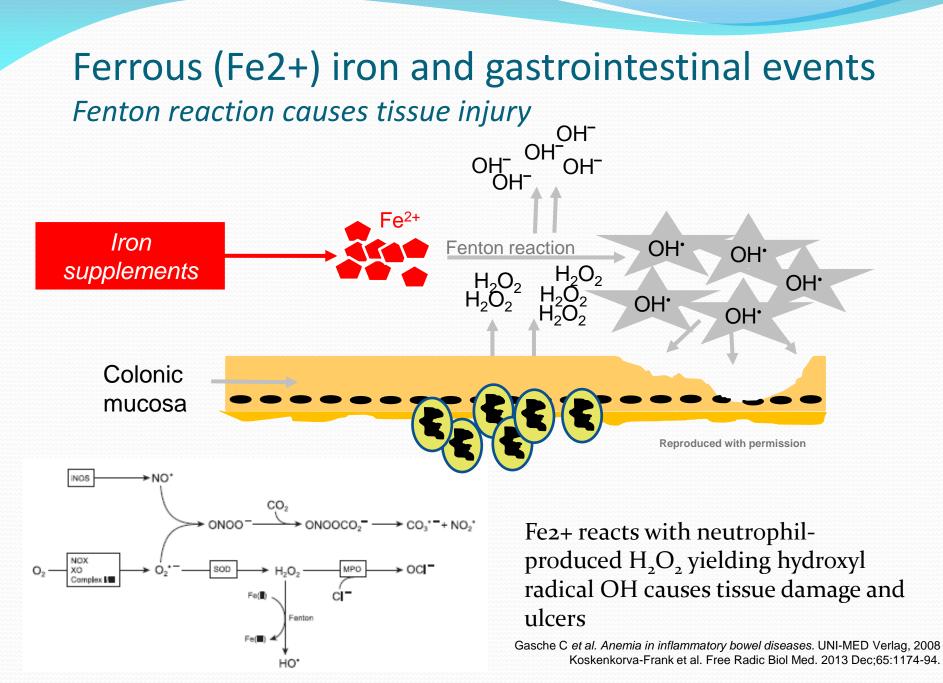
Maltofer[®]

Iron(III)-hydroxide polymaltose complex (IPC)

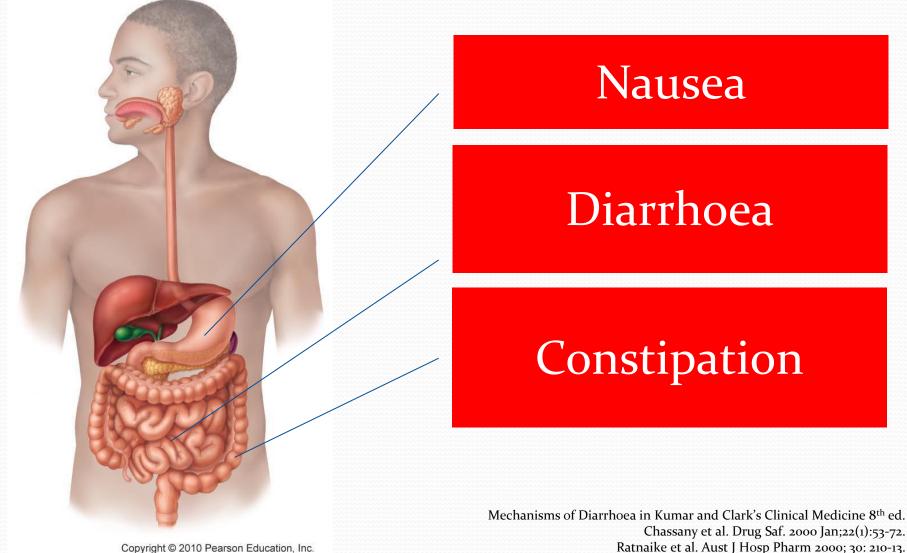
The structure of IPC's iron core resembles that of the iron storage protein ferritin



Ferritin has an iron(III)hydroxide-phosphate core and a protein shell

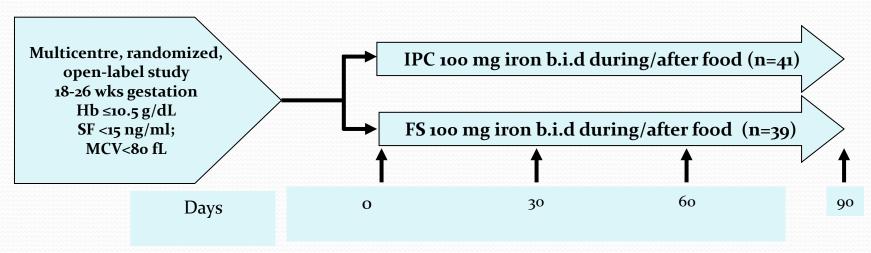

Knowing the Differences

Ferrous salt (Fe2+) vs Ferric Complex (Fe3+)


The controlled iron uptake from Maltofer[®] results in **good tolerability** and **low risk for intoxication** or iron overload in cases of acute or chronic overdose

Modified from Geisser P & Burckhardt S. Pharmaceutics 2011;3:12-33

Gastrointestinal adverse events Direct effect Fe2+ mucosal irritation

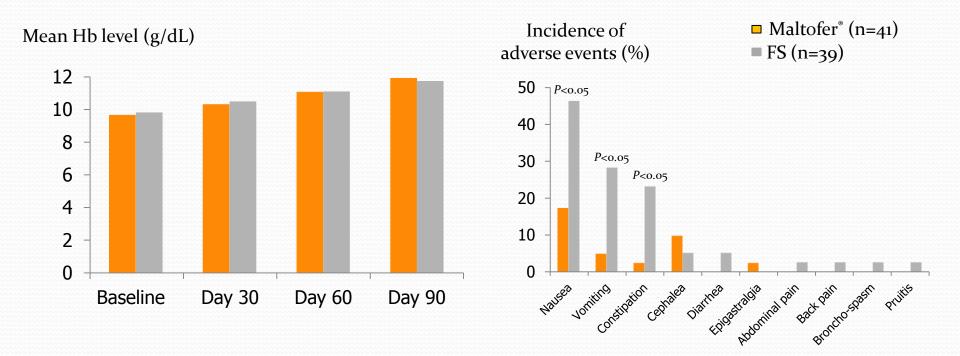


Copyright © 2010 Pearson Education, Inc.

Iron polymaltose complex in pregnancy

Objective:

To evaluate the efficacy and safety of IPC (Maltofer[®]) vs. ferrous sulfate (FS) in pregnant women with IDA


Primary endpoint:

• Change in Hb from baseline to Days 60 and 90

Secondary endpoint:

• Hb from baseline to Days 30, 60 and 90, change in serum ferritin, TSAT, serum iron, hemoatocrit, MCH and MCHC

Iron polymaltose complex in pregnancy

- Maltofer[®] was as effective as FS at correcting Hb levels
- With a lower incidence of most adverse events, Maltofer[®] showed a favourable tolerability profile versus FS

Oral Iron: Ferrous vs Ferric

Feature	Ferrous (Fe2+) compounds	Ferric (Fe ₃₊) complex
Preparation	FS, FGS, FF	IPC
Mechanism of iron absorption	Active and passive (paracellular) diffusion ¹	Active, controlled iron uptake ²
Elemental iron	30% from preparation	Preparation contain known amount of iron
Characteristics	 amount of iron In comparison with ferrous compounds, ferric complex is associated with: Lower risk of intoxication in case of overdose⁴ Reduced oxidative stress⁵ Fewer gastrointestinal side effects³ Better tolerability³ Higher compliance⁶ 	

- 3. Toblli JE & Brignoli R. Drug Res 2007;57:431-438;
- 4. Jacobs P *et al. S Afr Med J* 1979;55:1065–1072;
- 5. Dresow B et al. Biometals 2008;21:273-276;
- 6. Jaber L et al. J Pediatr Hematol Oncol 2010;32:585-588

Maltofer can be taken with or without food

Maltofer[®] has no detrimental interactions with a number of common food components and other drugs

Co-medications ¹	Food components ¹	
In rat studies, no interactions shown with:	In <i>in vitro</i> studies, no interactions shown with:	
 Tetracycline Aluminium hydroxide Acetylsalicylate Sulphasalazine Calcium carbonate, calcium acetate and calcium phosphate plus vitamin D3 Bromazepam Magnesium aspartate D-penicillamine Methyldopa Paracetamol Auranofin 	 Phytic acid Oxalic acid Vitamin A Sodium alginate Vitamin D3 and vitamin E Soya oil and soya flour Choline and choline salts 	
In humans, the following was observed: •No reduction in IPC absorption by aluminium hydroxide and tetracycline •No decline in plasma tetracycline level	Increased iron absorption with vitamin C ²	

World Health Organisation

"All women of reproductive age are at risk of iron deficiency."

"... IDA has been associated with increased risks of low birth weight, prematurity and maternal morbidity."

"Iron deficiency and anaemia reduce the work capacity of individuals and entire populations, bringing serious economic consequences and obstacles to national development."

WHO. Worldwide prevalence of anaemia,1993–2005. 2008. <u>http://whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf</u> WHO. Guideline: Daily iron and folic acid supplementation in pregnant women. 2012. <u>http://apps.who.int/iris/bitstream/10665/77770/1/9789241501996_eng.pdf</u> WHO. Micronutrient deficiencies. 2013. <u>http://www.who.int/nutrition/topics/ida/en/</u>

Summary

 Iron deficiency (ID) is highly prevalent among women even in developed nation

iron requirement is significantly increased during pregnancy

- Early diagnosis of iron deficiency and anaemia is crucial
 - Anaemia is defined as Hb<11g/dl in pregnancy (WHO)</p>
 - > A ferritin level<30ng/ml should prompt iron replacement therapy
- Heam iron is the best absorbed but are often insufficient for pregnant mothers
- Not all oral iron is the same, iron polymaltose complex (IPC) has demonstrated efficacy in the prevention and treatment of IDA in pregnant mothers
- Maltofer[®] has no detrimental interaction with common food and drugs hence co-administration with such component does not reduce the iron absorption

Thank you for your attention

